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ABSTRACT
High quality dense image correspondence estimation between
two images is an essential pre-requisite for view interpola-
tion in visual media production. Due to the ill-posed nature
of the problem, automated estimation approaches are prone
to erroneous correspondences and subsequent quality degra-
dation, e.g. in the presence of ambiguous movements that
require human scene understanding to resolve. Where visu-
ally convincing results are essential, artifacts resulting from
estimation errors must be repaired by hand with image edit-
ing tools. In this paper, we propose a new workflow alter-
native by fixing the correspondences instead of fixing the
interpolated images. We combine realtime interactive corre-
spondence display, multi-level user guidance and algorithmic
subpixel precision to counteract failure cases of automated
estimation algorithms. Our results show that already few
interactions improve the visual quality considerably.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Motion; H.5.2 [Information Interfaces and
Representation]: User Interfaces—Interaction styles

Keywords
dense image correspondence estimation, optical flow, inter-
active, user input, view interpolation

1. INTRODUCTION
In visual media production, view interpolation is used for

a multitude of purposes, from frame upsampling (purely in
the temporal domain), freeze-rotate shots (purely in the spa-
tial domain) to combinations of both.

A typical three-stage workflow consists of estimating dense
image correspondences, generating interpolated views, and
correcting the interpolated frames in an image editing tool.
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Figure 1: User-guided correspondence estimation.
(a) image with user hints in green and blue (b) over-
lay, unsupervised run (c) overlay, user-guided run.

The accuracy of the correspondences influences the effort
one has to spend on correcting the interpolated frames; the
more interpolated frames are rendered, the more favorable
it is to correct an error in the correspondence map instead
of in all interpolated frames.

In this paper, we focus on improving the correspondence
estimation step. Our proposed production workflow is to
estimate dense image correspondences while leveraging user
interaction, generate improved interpolated views, and thus
eliminate or greatly reduce manual adjustment efforts. The
more difficult the correspondence estimation (e.g. fast move-
ments, chaotic situations with much ambiguity), the greater
is the benefit gained by human guidance.

The steady rise of GPU power and the development of re-
altime capable optical flow GPU implementations have made
interactivity feasible also for large images. Our approach is
novel in being the first to explore interactive manipulation
for dense image correspondence estimation.

1.1 Related work
Dense image correspondence estimation is an active re-

search area of both computer graphics and computer vision.
Optical flow. The last decade has seen impressive im-

provements, fueled in part by quantitative evaluation bench-
marks [1]. Contemporary algorithms achieve subpixel accu-
racy in continous space [9, 7] or focus on large displacements
by sampling [3]. However, due to the ill-posed problem set-
ting, failure cases are still frequent, e.g. visual ambigui-
ties, violations of brightness or gradient constancy assump-
tions. Occlusions are also problematic because the optical
flow model simply does not consider it, although e.g. Sun et
al. [6] perform simultaneous layer and depth order estima-
tion for small motions.

Flow Correction Tools. Correcting dense image corre-
spondences manually is a recent field. While supplying pri-
ors is a common technique [2], interactive or post-estimation
correction is rare. The commercial tool Ocula [8] edits stereo
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Figure 2: User interface with four views. Top row:
Source and target image I1 and I0. Bottom row:
Correspondence estimation (color-coded) and inter-
polation preview (warped I1).

disparity maps after estimation. The work of Klose et al. [4]
focuses on post-estimation correction of image correspon-
dences. In contrast, we apply interactive correction that
benefits from ongoing algorithmic refinement.

2. USER INTERFACE
Our interactive tool assists a visual artist in the correspon-

dence estimation process (Fig. 2). The top row displays the
source and target images, the bottom row shows the current
flow field estimation (color-coded) together with a preview
of the warped source image. This allows a quality assess-
ment, where the warped source image should ideally match
the target image.

In order to formulate appropriate user actions, we first
identify issues with a purely automated estimation and then
define user guidance operations to ameliorate them.

2.1 Problem formulation
While contemporary optical flow algorithms achieve im-

pressive results for a wide range of input images, there are
reccuring errors that have the common trait of being readily
noticable to a human observer, but hard to address compu-
tationally. The most common errors include:

(E1) long displacement in wrong direction or magnitude,
caused by ambiguities such as several similar objects. In
classical coarse-to-fine warping approaches (as opposed to
dedicated large displacement algorithms), objects that are
smaller than their movements also disappear in the image
pyramid downsampling.

(E2) long or short displacement in wrong direction or
magnitude, caused by violation of the brightness constancy
assumption, e.g. glossy objects look different in the two
respective images.

(E3) continuity where there should be a discontinuity,
caused by uncertainty on where to split the flow. Anisotropic
flow [7] is a partial remedy, but cannot naturally distinguish
between object boundaries and boundaries within an object,
e.g. hand and wall vs. hand and sleeve: both have distinct
colors but only one is an object boundary.

(E4) discontinuity where none should exist. If forced
to diverge, algorithms cannot make scene-based preferences
about the location of the discontinuity.

Problems (E1) and (E2) relate to displacement decisions,
and (E3) and (E4) relate to discontinuity decisions.

2.2 User guidance operations
While (E1) has been addressed by algorithms with a local

displacement sampling of more than one pixel [5, 3], ambi-
guities like several similar objects will still cause confusion.
(E2) will hold true for all algorithms that rely on the bright-
ness constancy assumption or a variant thereof. We address
this issue by:

(A1) A user defined offset prior poff(x) = (offsetx, offsety)T

for a circular region of the source image I1 to the target im-
age I0, specified as prolonged mouse clicks into I1 and I0,
shown in Fig. 1. In case of a brightness constancy violation
(E2), a sufficiently large area around the violation must be
chosen. Because no solution can be found for the violated
pixels, the surrounding region must enforce a common mo-
tion direction.

Problems (E3) and (E4) are for the most part segmen-
tation problems, as flow field discontinuities often relate to
object boundaries. A layered representation requiring at
least 3 input images has been addressed by Sun et al. [6].
We address this by:

(A2) A user defined local data weighting pdata(x) which
increases or decreases regularization (enforcement of smooth-
ness) on a circular area, specified as prolonged mouse clicks
into I1. Decreased regularization will allow discontinuities
in the flow field, addressing (E3). Increased regularization
will hold the region together, providing a remedy for (E4).

All operations are applied while the algorithm is paused
between iterations. With the user interface always showing
the current estimation, the user pauses upon visual identi-
fication of a mismatch, applies the guidance, and resumes
into repeating the current iteration, which refines the input.

In line with our objective to enhance rather than supplant
existing optical flow algorithms, additional global parameter
tuning can also be performed as in the automated case.

3. ALGORITHM ENHANCEMENT
We take the TV-L1 optical flow algorithm by Zach et al. [9]

as basis for our work. Following their notation, we assume
two images I0, I1 with coordinates x = (x, y)T , and strive
to attain the backward flow u = (ux, uy) such that I1(x +
u(x)) = I0(x), where I{0,1}(x) is a brightness value and
u(x) a two-dimensional displacement vector. The employed
coarse-to-fine pyramid has levels L ∈ [0..n], with 0 the finest
and n the coarsest image resolution. To integrate the user
priors, we first analyze relevant parts of the algorithm and
then describe (A1) and (A2).

3.1 Optical flow assessment
The TV-L1 approach is an energy minimization with a

coupling term that allows alternating optimizations of the
data and smoothness terms, and is thereby well suited for
visual analysis. The overall energy to be minimized (eq. 12
in [9]) is defined as:

E =

∫
Ω

|∇u|+ 1

2θ
(u− v)2 + λ|ρ(v)|dx (1)

Both u and v represent the correspondences to be esti-
mated. The regularizer |∇u| enforces smoothness of the flow
field, the residual |ρ(v)| enforces adherence to the brightness
constancy (data term) and λ is a weight relating data and
smoothness term. The coupling term 1

2θ
(u − v)2 penalizes

deviations of u and v, allowing the algorithm to perform
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Figure 3: Jump scene from a movie production. (a) source image I1 (b) unguided TV-L1 (c) large displacement
optical flow [3] (d) user guided TV-L1 (e) target image I0. Both automated algorithms have partial failure
cases, which are remedied with mid-level user interactions and subsequent algorithmic refinement.

alternate updates to u and v (eq. 13 and 15 in [9]). After
convergence, u is equal or very close to v.

Considering the data term in more detail, the residual ρ is
defined as the difference between the warped source image
I1 and the target image I0. In order to make the function
locally convex, a first order Taylor expansion is applied:

ρ(u) = I1(x + u)− I0(x)

≈ I1(x + u0) + 〈∇I1(x),u− u0〉 − I0(x) (2)

For this, the flow u is subdivided into a fixed part u0 and a
differentiable part u−u0 which is optimized pointwise along
∇I1. Since Taylor expansion is only valid for small distances,
a coarse-to-fine warping scheme is employed where u0 is the
upsampled flow from a coarser level.

The smoothness term |∇u| is already a convex function,
so no further modification is required.

With these definitions in mind, we formulate operations
(A1) and (A2) in more detail.

3.2 User defined correspondence
We address a user defined offset in the smoothness update

step (eq. 13 in [9]). Given poff(x) : R2 → R2 at pyramid level
L, we integrate the prior at the level initialization stage by
replacing u0(x) locally with poff(x). We omit the replace-
ment when u0(x) and poff(x) are already suffiently close
(within 1 pixel distance). As a consequence, on a higher-
resolution level the closeness requirement is tighter.

The user-defined motion is guaranteed to be correct even
in ambiguous cases (E1) but not subpixel precise. We there-
fore propagate poff(x) to levels L to L+m, where m defaults
to 10, and resume the estimation at level L + m. Particu-
larly on levels smaller than L, the optimization of u − u0

determines the final subpixel precise placement.
The introduced offset is by nature a sharp discontinuity

in the flow field, that the smoothness optimization step will
try to erase. We therefore locally replace the L1 norm |∇u|
with the more robust Huber-L1 norm from Werlberger et

al. [7] |D
1
2∇u|ε which penalizes quadratically for motions

smaller than ε and linearly for larger motions. D
1
2 is a 2x2

matrix that linearly weights ∇ux and ∇uy with respect to
the image gradient ∇I1, and influences the update step for
the smoothness term (eq. 15 in [7], eq. 10 in [9]):

pn+1
d =

pnd + τ(D
1
2∇un+1

d − εpnd )

max(1, |pnd + τ(D
1
2∇un+1

d − εpnd )|)
(3)

As in [7], we set D
1
2 = exp(−α|∇I1|β)~n~nT +~n⊥~n⊥T

with
~n = ∇I1

|∇I1|
, and ~n⊥ a unit vector perpendicular to ~n, with de-

faults α = 3 and β = 0.5. This has the effect that the large
discontinuity that has to occur due to the defined offset is
preferably around image gradients in I1, which often coin-
cides with boundaries in user selected objects. Even if this
is not the case, the approach will still work, but boundary
regions will not be as well defined.

Violations of the brightness constancy assumption (E2)
cannot be resolved by ρ since it is not possible to guess the
“correct” color of e.g. a specularity. In this case, the region
must be chosen large enough so that the smoothness term
will enforce compliance to surrounding displacements.

3.3 User defined regularization
We address a user defined data weight in the data update

step (eq. 15 in [9]). Given pdata(x) : R2 → R on pyramid
level L, we locally set λ := λ∗exp(ηpdata(x)), η = 0.5, for all
regions defined in pdata, thereby influencing the thresholding
step:

v = u+ =


+λθ∇I1 if ρ(u) < −λθ|∇I1|2

−λθ∇I1 if ρ(u) > +λθ|∇I1|2

−ρ(u) ∇I1
|∇I1|2

otherwise

(4)

The effect is that the thresholding step assumes a smaller
or larger valid range ±λθ|∇I1|2 along which to follow the
image gradient according to the residual ρ.

4. RESULTS
Since visual authenticity is our main objective, we perform

a visual assessment of the warped source image I1 instead of
using a metric such as average endpoint and angular error.

Fig. 3 shows a green-screen example from a movie pro-
duction. Both TV-L1 and LDOF (large displacement op-
tical flow [3]) do not match arm and leg of the right actor
correctly. A series of six manual offset priors on level 10 al-
lows our interactive algorithm to find an improved solution,
which is then automatically refined on level 9 and upwards.

Fig. 4 shows two frames from the Middlebury [1] backyard
sequence. To simulate faster movements like in real-world
examples, we employ a frame skip of 3. Both TV-L1 and
LDOF do not match the ball correctly. One manually set
offset region on level 10 solves the issue. Further problems
of automated TV-L1, e.g. the green skirt, the older girl’s
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Figure 4: Backyard scene with 3 frames difference, from the Middlebury [1] data set. (a) source image I1
(b) unguided TV-L1 (c) large displacement optical flow [3] (d) user guided TV-L1 (e) target image I0. Both
automated algorithms are unable to match the ball properly. A single user operation fixes the issue.

left face side or the boy’s leg, are resolved by smoothness
priors or offsets.

In both examples, the interaction time has been less than
30 seconds, with manual offsets as main input type.

5. DISCUSSION
Unsurprisingly, the visual quality of interpolated images

improves with additional user input. The main question
from a productivity perspective is whether the time spent
in flow interactivity makes up for the time saved in final-
frame editing. In our experience, interaction times are short,
usually a few seconds, since only approximate inputs are
needed. This makes the approach valuable for any number
of interpolated frames.

Editing on an intermediate pyramid level is recommended
as user input is in most cases imprecise; the remaining levels
then refine the details of the priors globally.

The total runtime depends on the optical flow. On a
Nvidia GTX590, our implementation takes around 33 sec-
onds for 720p footage, while reaching editable levels already
after 5 seconds. User guidance adds a few to tens of seconds.

We found that the general effectiveness of user inputs de-
pends drastically on the edited scene. Editing rapidly chang-
ing fine structures such as hair are best left in image space,
whereas object displacement can be handled well in corre-
spondence space.

6. CONCLUSION
We presented a novel approach for user-guided dense im-

age correspondence estimation. Our tool visualizes flow for-
mation, and integrates user-defined correspondences and lo-
cal smoothness priors to affect the emerging flow field.

The approach improves on the good results of automated
algorithms, and allows user assistance in failure cases or re-
gions of failure. Even if input is imprecise, our subsequent
estimation compensates for it, reducing interaction times.
Global parameter tuning efforts are also reduced because
the results become immediately visible after adjustment.

Our implementation is based on a comparatively pure op-
tical flow formulation. By integrating the interactive ap-
proach, similar results can be expected for more complex
and sophisticated state-of-the art algorithms. An extension
to more than two images (either a video stream or multi-

view setting) will also prove to be beneficial by allowing
edit operations that span several frames.
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